
Dr. Mohammad Ahmad

Principles of Programming

Outline

• Syllabus

• First Program

Focus of the Course
• This is an intro to problem solving and programming

class (that uses the C programming language)

• The focus is on
 problem solving
 the logic of programming
 program design, implementation, and testing
 the fundamentals of programming

Warnings
• Learning how to program takes a lot of time!
• It also requires a lot of patience.
• You cannot learn how to program by just reading the

textbook. You have to spend long hours in front of the
computer.

• If you want to learn how to program well you will have
to take at least 2-3 other programming classes as
well. This class alone is not enough!

• This class is not exclusively about writing code. It
also emphasizes Problem Solving.

First Program

The C Programming Language
• A programming language specifies the words and

symbols that we can use to write a program.

• A programming language employs a set of rules that
dictate how the words and symbols can be put together to
form valid program statements.

Note: The computer will always do what you tell it to do: not
what you want it to do.

Reserved Words in C

auto break case chart const continue
default do double else enum extern
float for goto if int long register
return short signed sizeof static
struct switch typedef union
unsigned void volatile while

C Program Structure

main()

{

}

#include <stdio.h>

// comments about the program

printf(“Hello World! \n”);

C Program Structure

main()

{

}

#include <stdio.h>

All programs must have a main function

C Program Structure

main()

{

}

#include <stdio.h>

main function body

Comments can be placed almost anywhere

Comments
• Comments in a program are called inline

documentation

• They should be included to explain the purpose
of the program and describe processing steps

• They do not affect how a program works

• C comments can take two forms:

// this comment runs to the end of the line

/* this comment runs to the terminating
 symbol, even across line breaks */

White Space
• Spaces, blank lines, and tabs are called white

space

• White space is used to separate words and
symbols in a program

• Extra white space is ignored

• A valid C program can be formatted many ways

• Programs should be formatted to enhance
readability, using consistent indentation

Identifiers
• Identifiers are the words a programmer uses in a

program

• An identifier can be made up of letters, digits, the
underscore character (_), and the dollar sign

• Identifiers cannot begin with a digit
• C is case sensitive - Total, total, and TOTAL

are different identifiers

Hardware and Software
• Hardware

 the physical, tangible parts of a computer
 keyboard, monitor, disks, wires, chips, etc.

• Software
 programs and data
 a program is a series of instructions

• A computer requires both hardware and software

• Each is essentially useless without the other

Software Categories
• Operating System

 controls all machine activities
 provides the user interface to the computer
 manages resources such as the CPU and memory
 Windows XP, Unix, Linux, Mac OS

• Application program
 generic term for any other kind of software
 word processors, missile control systems, games

• Most operating systems and application programs
have a graphical user interface (GUI)

A Computer Specification
• Consider the following specification for a personal

computer:
 2.8 GHz Pentium 4 Processor
 512 MB RAM
 80 GB Hard Disk
 48x CD-RW / DVD-ROM Combo Drive
 17” Video Display with 1280 x 1024 resolution
 56 Kb/s Modem

• What does it all mean?

Components of a Computer

[Figure 1.3 in the textbook]

http://www.youtube.com/watch?v=Tj3CwEk6TJY

CPU and Main Memory

Central
Processing

Unit

Main
Memory

Chip that executes
program commands

Intel Pentium 4
Sun ultraSPARC III

Primary storage area for
programs and data that

are in active use

Synonymous with RAM

RAM is volatile memory

Start-up instructions are
burnt into ROM

Most modern
computers are byte-
addressable

Memory Analogy

Memory Analogy

Memory Analogy

Relationship Between a Byte and a Bit

Digital Information
• Computers store all information digitally:

 numbers
 text
 graphics and images
 video
 audio
 program instructions

• In some way, all information is digitized - broken
down into pieces and represented as numbers

Representing Text Digitally
• For example, every character is stored as a number,

including spaces, digits, and punctuation

• Corresponding upper and lower case letters are
separate characters

H i , H e a t h e r .

72 105 44 32 72 101 97 116 104 101 114 46

Binary Numbers
• Once information is digitized, it is represented and

stored in memory using the binary number system

• A single binary digit (0 or 1) is called a bit

• Devices that store and move information are cheaper
and more reliable if they have to represent only two
states

• A single bit can represent two possible states, like a
light bulb that is either on (1) or off (0)

• Permutations of bits are used to store values

Bit Permutations

1 bit
0
1

2 bits
00
01
10
11

3 bits
000
001
010
011
100
101
110
111

4 bits
0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

Each additional bit doubles the number of possible permutations

Bit Permutations
• Each permutation can represent a particular item

• There are 2N permutations of N bits

• Therefore, N bits are needed to represent 2N
unique items

21 = 2 items

22 = 4 items

23 = 8 items

24 = 16 items

25 = 32 items

1 bit ?

2 bits ?

3 bits ?

4 bits ?

5 bits ?

How many
items can be

represented by

The Central Processing Unit
• A CPU is on a chip called a microprocessor

• It continuously follows the fetch-decode-execute
cycle:

fetch

Retrieve an instruction from main memory

decode

Determine what the
instruction is

execute

Carry out the
instruction

Secondary Memory Devices

Central
Processing

Unit

Main
Memory

Floppy Disk

Hard Disk

Secondary memory
devices provide
long-term storage

Information is moved
between main memory
and secondary memory
as needed

Hard disks
Floppy disks
ZIP disks
Writable CDs
Writable DVDs
Tapes

Input / Output Devices

Central
Processing

Unit

Main
Memory

Floppy Disk

Hard Disk

Monitor

Keyboard

I/O devices facilitate
user interaction

Monitor screen
Keyboard
Mouse
Joystick
Bar code scanner
Touch screen

Flow of Information During Program Execution

(stored program concept)

Program Development
• The mechanics of developing a program include

several activities
 writing the program in a specific programming language

 translating the program into a form that the computer can
execute

 investigating and fixing various types of errors that can
occur

• Software tools can be used to help with all parts of
this process

Entering, Translating, and Running
a High-Level Language Program

Basic Program Development

errors

errors

Edit and
save program

Compile program

Execute program and
evaluate results

Errors (a.k.a., bugs)
• A program can have three types of errors

• The compiler will find syntax errors and other basic
problems (compile-time errors)

 If compile-time errors exist, an executable version of the
program is not created

• A problem can occur during program execution, such
as trying to divide by zero, which causes a program to
terminate abnormally (run-time errors)

• A program may run, but produce incorrect results,
perhaps using an incorrect formula (logical errors)

Programming Languages
• Each type of CPU executes only a particular

machine language

• A program must be translated into machine
language before it can be executed

• A compiler is a software tool which translates
source code into a specific target language

• Often, that target language is the machine
language for a particular CPU type

Syntax and Semantics
• The syntax rules of a language define how we can put

together symbols, reserved words, and identifiers to
make a valid program

• The semantics of a program statement define what
that statement means (its purpose or role in a
program)

• A program that is syntactically correct is not
necessarily logically (semantically) correct

• A program will always do what we tell it to do, not
what we meant to tell it to do

	Slide Number 1
	Outline
	Focus of the Course
	Warnings
	First Program
	The C Programming Language
	Reserved Words in C
	C Program Structure
	C Program Structure
	C Program Structure
	Comments
	White Space
	Identifiers
	Hardware and Software
	Software Categories
	A Computer Specification
	Components of a Computer
	CPU and Main Memory
	Slide Number 19
	Memory Analogy
	Memory Analogy
	Memory Analogy
	Relationship Between a Byte and a Bit
	Digital Information
	Representing Text Digitally
	Binary Numbers
	Bit Permutations
	Bit Permutations
	The Central Processing Unit
	Secondary Memory Devices
	Input / Output Devices
	Flow of Information During Program Execution
	Program Development
	Entering, Translating, and Running �a High-Level Language Program
	Basic Program Development
	Errors (a.k.a., bugs)
	Programming Languages
	Syntax and Semantics

